
A guide to
unlocking serverless
at enterprise scale
Ship faster, run leaner, and
reduce total cost of ownership

Benjamen Pyle

gomomento.com 1

1. What is serverless?
1.1 Serverless is more than compute

1.2 Serverless is more than technology

2. Applying serverless
2.1 Where to begin

2.1.1 New features

2.2.1 Existing applications

3. Is your enterprise ready for serverless?
3.1 Does the culture embrace agility?

3.2 Is there a passion for observability?

3.3 What skills are in house currently?

4. Tips from advanced practitioners
4.1 Establish solid architectural standards early

4.2 Cost is measured against usage

4.3 Plan to observe from day one

4.4 Embrace infrastructure as code (IaC)

5. Conclusion
6. Appendix

Contents

gomomento.com 2

Enterprises are always looking for ways to ship
software with greater speed, higher quality, and fewer
resources—while also maintaining feature agility.

While these concerns and obstacles aren’t new to veterans in the technology sector, the
modern cloud approach to software delivery—including serverless technologies—gives
leaders and builders new ways to combat these competing forces. But what exactly is
serverless? How can it help solve modern problems? And finally, is my enterprise ready
and able to harness its power?

1. What is serverless?
So just what is serverless and what are the benefits that it can provide an enterprise organization? At its
simplest, serverless is a categorization describing a software component. These components provide
the developer with a contract around price, consumption, scale, and reliability. Something is said to be
serverless if it displays these attributes:

• Nothing to provision, nothing to manage. Serverless doesn’t mean the lack of
infrastructure, just that the provisioning and maintenance of that infrastructure are
abstracted away from the builder.

• Cost scales predictably with usage. This is the scale-to-zero principle. Serverless means a
usage-based pricing model with no minimums.

• No planned downtime. With no infrastructure to maintain, serverless means no maintenance
windows, which means higher availability.

• Ready with a single API call. There can be some variation here from putting a file in S3 to
launching a container in AWS Fargate, but serverless services are ready to be consumed on
a moment’s notice.

1.1 Serverless is more than compute

If so far this sounds strangely like AWS Lambda or Microsoft Azure Functions, that’s because those two
services are examples of serverless compute. But when leveraging serverless technologies there is a
great deal more at an engineer’s disposal than just compute.

Serverless components exist at all levels of an application’s architecture. There are services for data,
event management, workflow coordination, object storage, and API gateways just to list a few.

gomomento.com 3

Serverless has been at the heart of cloud systems for over 15 years. In fact, Amazon SQS
and S3 first shipped in 2006—and they’re serverless. AWS has continued to build upon that
success with Amazon SNS, Amazon DynamoDB, and Lambda. These single-purpose serverless
components embody all the attributes listed above. They are assembled like building blocks to
deliver robust architectures that perform from ultralight to massive scale.

But if components are single-purposed, how does a developer or architect design around these
capabilities? This is where the enterprise needs to be prepared to invest in its people.

1.2 Serverless is more than technology

If serverless describes technology capabilities, then why does this involve people?

Because at the heart of every technology solution lies the people who design, build, and
operate it. In a traditional “serverful” world, tasks to bring a software solution to market are
often siloed and executed in a sequential or waterfall fashion. Enterprises often have substantial
investments in their processes and people. Requirements are gathered, solutions are designed,
and infrastructure is provisioned and ultimately deployed with the software solution installed.

In this scenario, people fill very specific roles in service of delivery. Engineers and operations
teams work together but not always in harmony. In the case that a design doesn’t match the
needs of the user workflows, teams must work back through the process to remedy the issue.

Amazon
API Gateway

AWS
Lambda

Amazon
EventBridge

Amazon
DynamoDB

API Request Persist Changes

Serverful Delivery Model

Requirements Design Build Ship

To further illustrate this point, the below diagram represents a web-based request that is
designed to handle input, persist the output, and then propagate that change via change data
capture. Every component here is serverless.

gomomento.com 4

Contrast that with a design that has invested in serverless, and a couple of things will begin
to happen. The first outcome is that the job roles and functions needed to ship a product will
start to compress. Product people will start to understand cost and scale at a much more
intimate level. Operations engineers who in serverful delivery are focused on strictly running
infrastructure will now be assisting in the selection and configuration of serverless components.

The second outcome is that delivery teams who are working with autonomy to ship value
to their customers will be able to experiment and pivot much faster. These teams won’t be
heavily invested in infrastructure or sunk costs, nor will they be constrained by a design that
was built with a stream when all it needed was a queue. Serverless builds are adaptable,
configurable, and modular, giving teams an advantage over competition working strictly with
custom-built infrastructures.

When thinking about adopting or evaluating serverless in an organization, the impact on
existing talent is great. People want their work to matter and make a difference. The greatest
compliment a builder can receive is that someone using their software appreciates it and finds
it useful. Serverless enables faster feedback loops. The design, development, release, and
adaptation phases of software development are more compacted. These tighter loops allow
the builder to more easily bind their purpose to the enterprise’s purpose. Alignment equals
engagement. And in the modern workforce, employee engagement matters.

2. Applying serverless
There is no one-size-fits-all approach to adopting serverless in an enterprise. However, there are
several consistent considerations regardless of how much or how little of the serverless apple one
takes a bite out of. The following are things an enterprise needs to decide as it moves forward.

Serverless Delivery Model

Ship

Requirements

Design

Build

gomomento.com 5

2.1 Where to Begin

The age-old “where to begin” question strikes people first. The start sometimes paralyzes
even the most experienced enterprises but that shouldn’t be the case with serverless. Two
natural starting points hold whether the enterprise is shipping consumer software, business-to-
business software, or providing software as internal tools to support its operations.

2.1.1 New Features

Building new software is the perfect place to begin an enterprise’s serverless journey. This
endeavor doesn’t have to be large either. When trying out a new technology, starting at either
end of the difficulty spectrum can be a good choice. If the build is easy, an enterprise can see
a quick win and gain confidence. If the build is difficult and highly demanding, the enterprise
tackles something challenging, gains confidence, and proves or disproves critical assumptions
about the technology. However, if the enterprise wants to start with something difficult,
it might be useful to bootstrap the organization’s capabilities by bringing in some seasoned
experts. Serverless knowledge will spread like wildfire, so be prepared—in a positive way—for
this engagement.

When introducing serverless on new builds, the following areas are generally good starting points:

• API Development. This will combine components like Amazon API Gateway, AWS
Step Functions, Lambda, and DynamoDB.

• Data Pipelines. Data movement is a common challenge in any application.
Serverless components can turn traditional batch-based operations into nimble
real-time data mover powerhouses. Tools like Step Functions, DynamoDB, Amazon
Kinesis, and Amazon SQS are all helpful in these workloads.

2.1.2 Existing Applications

Many enterprises don’t always have new features rolling out where they can try brand new
patterns. This is why starting small with an existing application can be extremely valuable.

A common scenario ripe for a serverless build is the extension of an existing application. One
such use case is adding functionality to an API. By leveraging Lambda, API Gateway, or even
an existing load balancer, new functionality can be added without disturbing a more monolithic
component. Remember: Lambda and serverless are not synonymous, but using Lambda as an
event-driven compute engine—as it was intended—is a very natural starting point.

The beauty of extending an API with Lambda is that an enterprise can bring its existing
toolchain. Heavy on .NET Core? No problem, Lambda can do that. Does the enterprise lean
into Java? The same as .NET, Lambda can do that. Lambda also comes prepared with Linux-
based runtimes to launch Rust and Go code. Or perhaps there’s already a heavy investment in
containers? Lambda will run those too.

gomomento.com 6

Once that first Lambda is in place, the enterprise will have developed the skills and confidence
to explore and expand the solution to other serverless components.

The key is to start small, learn, adapt, and integrate.

3. Is your enterprise ready
for serverless?
That’s a broad question with a great deal of nuance. Only the enterprise can truly make that
determination. However, how would it do that?

3.1 Does the culture embrace agility?

Almost every enterprise will answer yes to this. There aren’t many
organizations out there that will admit to not being agile. However,
serverless allows an enterprise to take agility to a higher level. Some
of the key tenets of agile delivery are working software, allowing
for change versus following a plan, and empowering teams to act
autonomously and own their outcomes. Many enterprises struggle
to realize these attributes due to the rigidity of their traditional
infrastructure. Serverless architectures remove these legacy barriers
and allow teams to get on with the business of shipping value and
delighting its customers.

Is the organization ready to ship value quicker, fail faster, and adapt to key findings? It can be
tough to allow a team to fail in front of a customer with a new feature. But with serverless, those
failures can turn into successes as the team learns what directions they shouldn’t take and can
quickly pivot to what directions they should take. That’s agility.

3.2 Is there a passion for observability?

Serverless systems often have characteristics that without observability
are difficult to manage: they are sometimes event-driven, infrastructure
is almost always ephemeral, and managed components generate
their instrumentation.

Without a passion for observability, user requests and system events will
fall into a giant abyss containing all these lost signals. When designing
around observability, the three pillars of logs, traces, and metrics are
where the journey begins.

gomomento.com 7

Of course an enterprise doesn’t need to have all of the instrumentation or plans for
instrumentation in place before trying serverless. However, before any serious serverless
feature is to be shipped to production, the practice of observability needs to be addressed,
which includes tooling and instrumentation.

So is the enterprise comfortable learning and applying the techniques it requires to monitor
serverless applications? And a follow-up question: are the teams that currently run operations
and engineering capable of leaning in closer together to solve new problems and challenges?

3.3 What skills are in house currently?

Touching again on an earlier point, people matter when an enterprise
decides to embrace serverless. Whether that enterprise is ready
depends largely on the people and team that are blazing the path.

This isn’t to say that the enterprise requires at least three serverless
developers who are fluent in infrastructure as code and have shipped to
production before. But it does require a general spark of curiosity and a
willingness to lean into new techniques and paradigms.

If the enterprise is serious about empowering teams to ship early, adjust often, and
embrace change in both requirements and scale, then its people must be willing to understand
how. As mentioned, serverless will compress job responsibilities and create tighter teams.
These people units will learn and grow faster together when corporate direction lines up with
technical curiosity.

4. Tips from advanced practitioners
No one has all the knowledge required to embark on a journey like this from day one. However,
being as prepared as possible reduces the chance of encountering a wide array of outcomes
and scenarios. This section includes insights from enterprise serverless veterans about what
they wished they knew when they started.

4.1 Establish solid architectural standards early

Serverless comes with new tools and new paradigms for shipping value to customers. It creates
higher-level abstractions for developers to build upon. Learning and understanding these are
required to take advantage of them at runtime.

Important standards to nail down early in adoption include which components the enterprise
will allow and which problems they will solve. For example, event processing is usually a key
piece of serverless architecture. In AWS, there are several components for handling events.
SQS, EventBridge, and Kinesis are three that spring to mind. If the system needs to handle data,
DynamoDB, S3, and other datastores can be leveraged.

gomomento.com 8

A well-intentioned enterprise can quickly find itself with multiple ways to handle any number
of scenarios, which creates complexity in design and management—even at low scale. This is
because the agility discussed earlier can lead to confusion.

In addition to defining standards around which components, it’s important to set good
defaults for chosen services. In the SQS example, understanding visibility timeouts, message
delays, and dead letter queues will set an enterprise up for success as serverless spreads
throughout the organization.

Adopting serverless will come with a host of small examples like the above. Advanced
practitioners know that understanding the non-functional requirements in a project will drive
the answers to so many of these questions. Remember that serverless components are usually
assembled like pieces in a puzzle, and there are more pieces than in a traditional monolithic
build. Setting solid standards around choice and usage will enable the enterprise to understand
runtime profiles and thus pivot when new outcomes are observed.

4.2 Cost is measured against usage

A serverless component’s cost is measured in usage. That usage could be the number of events
handled, duration of execution paired with memory allocated, or the amount of data saved or
retrieved. The internet is littered with arguments that serverless is expensive. But to take an
opposing and more encompassing view of cost, an enterprise needs to look at the design and
the human cost to maintain—the total cost of ownership (TCO).

Let’s look at an example with DynamoDB, which often gets labeled as “expensive”. DynamoDB
is a highly available key-value store database that when modeled correctly will perform
consistently with single-digit millisecond response times.

DynamoDB charges a customer at the simplest level based on how many read and write units
the customer requires. Read Capacity Units (RCUs) are clearly defined around 4KB boundaries.
RCUs are then charged at $0.25 per 1 million (as of this writing).

At low volume, these types of metrics don’t mean a great deal. So what if an item size is 5KB
instead of 4KB and the application uses consistent reads everywhere, incurring 2 RCUs per
request? They only cost $0.25 per million. No big deal, right? Wrong—in reality, the feature is
eating through the 1 million requests twice as fast.

4 KB is 1 RCU

System Design Impact on DynamoDB Costs

5KB is 2 RCUs

2 billion RCUs
x $0.25/million = $5001 billion RCUs

x $0.25/million = $250
KB KB KB KB KB

1 billion 5KB requests1 billion 4KB requests

KB KB KB KB

2x COST

gomomento.com 9

Experts know that cost matters and that it follows usage. Modeling the impact of a system’s
design early in the process can yield huge savings down the line.

Additionally, savvy executives know that the TCO must include the software purchased and the
people required to manage that software. With serverless, an enterprise takes advantage of all
the right optimizations baked into the price. It also avoids licensing fees to a software vendor.
And lastly, it doesn’t have to patch or maintain any of this infrastructure.

After considering all the benefits of upfront design planning, cost following usage, and the lack
of infrastructure management, it’s apparent the argument that serverless is expensive usually
stems from just one angle: the cost for usage. An enterprise must look deeper at the TCO—
including the cost of people, infrastructure, maintenance, and licensing.

4.3 Plan to observe from day one

As mentioned earlier, observability needs to be a passion in enterprises adopting serverless.
Advanced practitioners know just how important this topic is when deploying serverless builds
into production.

Provisioning & Configuration
Upgrades & Patching
Scale Out
Monitoring
Maintenance Windows
Load Testing & Tuning
Business Opportunity Costs
• Developer Productivity
• Business Agility
• Competitive Advantage

Software Subscriptions
Hardware
Salaries

Understanding Total Cost of Ownership

gomomento.com 10

By planning for the three pillars of observability (logs, traces, and metrics, as a refresher), an
enterprise can set itself up for success when rolling out its first serverless feature—and provide
comfort when remediating issues in production. Take the time to decide on the following:

1. What level of dimensionality needs to exist?

2. What tooling is needed to support organizational visibility?

3. Plan for the cost of tooling, as observability costs can grow quickly with volume.

4. What techniques or skills are needed to make observability a key part of
the architecture?

4.4 Embrace infrastructure as code (IaC)

This is one of those insider tips that has multiple benefits, but let’s focus on two:

1. IaC allows for parity between environments thus reducing risk in infrastructure drift.

2. When infrastructure is coded as part of the serverless feature, there are
fewer dependencies.

With the abstraction of physical server infrastructure, serverless components will be powered
by configuring and using APIs to engage with resources. When a build is just in a sandbox,
using a GUI tool can be just fine to get things going. However, as soon as that sandbox needs to
migrate to a proper dev, test, and production setup, getting those configurations right can be a
headache ripe for error. This is often known as “Click-Ops”.

IaC is source code just like application code that sits right next to the actual business value.
The benefit of IaC as it relates to consistency across environments is also in the fact that many
of the tools come with best practices and defaults out of the box. Every enterprise will need to
evaluate that they are correct, but they provide great starting points. There are many flavors of
IaC tooling ranging from third-party solutions to native cloud vendor-supplied options that an
organization will need to evaluate. The important thing is to choose the one that fits the skills of
where the team is today and where they want to be in the future. Once the selection is made,
then standardize around it to gain efficiencies as the serverless journey scales in the enterprise.

Deployment repeatability is a key advantage to serverless and IaC. As an enterprise, don’t
miss out by not using it. Many enterprises believe that they don’t have enough environments or
feature scale to warrant the investment in IaC. The truth is, every organization—regardless of
scale and size—benefits from the consistency that comes from deploying infrastructure as code.

In addition to repeatability, IaC increases speed and agility. By pairing it with serverless designs,
which also enable agility, that benefit is doubled. It also has the nice side effect of reducing
dependencies between teams. If the engineering team can build and design its infrastructure
with proper architecture, then the burden on the DevOps team is reduced. This can have a
tremendous impact on staffing and morale.

gomomento.com 11

5. Conclusion
Serverless isn’t new. Going back to 2006 when AWS released S3 and SQS, serverless could be
said to be almost 20 years old. It boils down to some distinct advantages for enterprises:

• Ship earlier, faster, and more often.

• Enable teams to take ownership of their delivery pipeline through IaC, rapid delivery,
and compression of roles.

• Manage costs at the usage level while reducing the total cost of ownership with no
infrastructure to maintain, patch, or provision.

As an executive or a practitioner, it might be difficult to see a path forward to achieve some of
these benefits. Perhaps there’s legacy code or a skeptical production organization that might be
unwilling to lean into something new.

Remember, start small. Monoliths might exist for a reason. Everything doesn’t have to be
serverless. Pick a small feature, rewrite an existing one, or extend something that already exists.
Conditions don’t have to be perfect to get started. Just start.

The biggest point is to remember that nothing is ever absolute. At the end of the day, only the
enterprise can decide how it wants to ship and manage value. Serverless can be the strategy,
or it can be a part of the strategy. Many enterprises adopt what is called a serverless-first
approach. They acknowledge that not all problems fit the serverless pattern, but they start
there and then pivot when needed. Their executives and builders come together, identify
places that serverless could help their organization, and start realizing the benefits that
serverless can bring.

Learn more about
Wyze’s success
with Momento

Read Case Study

For example, fintech giant CapitalOne deals with strict industry
regulations and has been operating at internet scale for years
with Lambda, Fargate, and many other serverless components.
Taco Bell, a popular American quick service food chain, leverages
serverless to power high-volume and spiky workloads in their
mobile app. And Wyze, one of the leading smart home device
providers, uses Momento Cache to manage billions of thumbnail
images across millions of IoT cameras every single day.

They’re experiencing the power of building with serverless.

Is your enterprise ready for it?

https://www.gomomento.com/resources/case-studies/momento-helps-wyze-keep-smart-home-devices-affordable-with-object-storage-savings

gomomento.com

Momento is taking serverless to the next level—making infrastructure easy at enterprise scale.

With automatic resource management in Cache, Topics, and Storage, your developers can build

what’s next with simpler architecture and no distractions.

We’d love to talk about where serverless can start transforming
your business. Contact us today.

Quickly improve your
performance, reduce

costs, and handle load at
any scale.

A low-latency pub-sub
service built for massive
scale with unbeatable

connectivity.

An intelligent datastore for
high-volume workloads that

automatically optimizes costs
according to access patterns.

Cache Storage

Benjamen Pyle is a technology executive and software developer with
over 20 years of experience across startups and large enterprises. He
is Co-Founder and CEO of Pyle Cloud Technologies, an AWS-focused
cloud consultancy specializing in cloud strategy, architecture, training,
and cost optimization.

He’s also an AWS Community Builder recognized for his deep expertise
in serverless computing, event-driven architecture, and cloud-native
and containerized solutions.

When Benjamen doesn’t have his head in the clouds, he’s either playing
golf with his wife and two boys or outside with their 12 paws.

Topics

Sources

• Momento’s Serverless Litmus Test

• Amazon DynamoDB Pricing

• Blogs from Benjamen Pyle

 ‣ Intersection of Technology and People

 ‣ Serverless and Agile

 ‣ Serverless: A CTO’s Perspective

More from Momento

• Discover Momento case studies

• Read the Momento blog

• Explore Momento use cases

• Learn more about Momento Cache

• Learn more about Momento Topics

About the Author

https://www.gomomento.com/contact-us
https://www.gomomento.com/blog/fighting-off-fake-serverless-bandits-with-the-true-definition-of-serverless
https://aws.amazon.com/dynamodb/pricing/on-demand/
https://www.binaryheap.com/intersection-of-technology-and-people/
https://www.binaryheap.com/serverless-and-agile/
https://www.binaryheap.com/serverless-a-ctos-perspective/
https://www.gomomento.com/resources/case-studies
https://www.gomomento.com/blog
https://www.gomomento.com/use-cases
https://www.gomomento.com/platform/cache
https://www.gomomento.com/platform/topics

